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By Ham Ekstein

SUMMARY

we width of a Debye-Scherrer line
spectral width of the pr= radid ion

under the combtied influence of
and of the small size of the

c-~tal grains is .calc-tiated~omitting’all,geometric causes of line
broadening. The shape of the crystals is assumed spherical, with the
same dismeter for all grains. The orientation is assumed to be random,
with negligible statistical fluctuations. It is shown that the width
under these circumstances is the sum of that width which is obtained
with very large crystals (”spectral” width) and that which is obtained ‘
with monochromatic ra.dktion (“size” width).

INTRODUCTION

h 1926, kue (reference.1) calkated the angular ,widthof a
beam diffracted by a uniformly random mass of crystals of uniform size
and shape when it is irradiate~ by a parallel monochromatic beam. The
physical probkn is somewhat ill-clef@cd, since the shape of the indi-
vidual crystals is evidently widely different. However, the fact that
experimental messurements are quite reproducible supports the assumption
of a reasonable shape common to all crystals. Various workers have
since then used different shapes and different approximation methoti.
Patterson (reference2) derived a rigorous solution for the case of
spherical shape for all crystals. Comparing this result with the
approxhate solution obtatied by Laue’s method, he concludes that one
part of Laqe?a method (the’tangent-plane approximation) is quite
satisfactory,whereas the tie of the approximation function is scmewhat
doubtful. Since the basic assmnption of equal shape for alJ crystals
is quite f= from reality, it does not seem worth while to attempt high
mathematical accuracy in calcukttig the form of the ltie. Laue*s

, approximationmethod wfll be Wed h the fonow~g Computations) ad%
,,

for mathematical convenience, a spherical shape for the crystal grati
will be assumed. In the previous papers, the reasqn for considering

. the monochromatic case only was the fact that the influence of the

. .
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actual spectral width of the characteristic
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radiation was considered
●

negligible (reference 3). However, it has been shown (reference4)
that, for measurements of high precision, the tifluence of the spectral
width, far from being negligible, becomes the decisive limiting factor.
Consequently, it has become desirable to calculate the line width for
the case of finite spectral width of the primary radiation. An tivesti-
gation of this method of calculation”was conducted at the Armour
Research Foundation under the sponsotishipand with the financial
assistance of the Nation’alAdvisory Comittee for Aeronautics.

This report is part of a cooperative project with Dr. Stanley Siegel.

CAICUIATION OF INTENS~Y DISTRIBUTION ,

Consider first the diffraction of a monoctiomatic wave by a single
crystal h a deftiite direction. In the usual representation in
Fourier space, as shown in the following diagram, CO is the wave vector
having the direction of the incident beam and length l/A,

o

.

if A is the wave length and O is the origin of the reference system.
The intensity scattered in the direction of CR is then proportional
to the value of the interference fuuction I*12 at the potnt of radius
vector R, that is, the petit where the diffracted wave vector intersects
the lkue-sphere. If a reciprocal lattice point ~ is close to the

petit ~, the titerference function at ~. will be very nearly equal to
the contribution of the lattice point Ah (reference2). since a
sphericalcrystal is considered, this dondnant term of Lhe interference
function will have spherical symmetry with respect to the lattice
petit Ah. Therefore, the scattered intensity will be

—— .-. —–——- —
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(1) “

that is, only a function of the length of the vector R? which joins—
the points & and IJ.

In order to find the titensity diffracted by a mass of randomly
oriented crystals of equal shape, the reciprocal lattice, that is, the
point & might be rotated about O, the potits C and ~ being

fixed, and the intensity (equation (l)) integrated over all positions
of the crystal. Alternatively, the triangle CO~ might be rotated .
about O but with the point & fixed. Thus, the total intensity

diffracted in the direction e by-the wave length X = I/k is

(2)

where Q is the solid angle about O (as shown in the following
diagram).

.

%

.

If the spectral intensity distribution is given by a function f(k),
the total intensity contributed by all wave lengths is

Ja NV(R’)&(k) dQdk . (3)
.

\
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Since k and R are related by

R=2ksin6

equation (3) becomes:

The exact expression for [*I2
Ih its place the approximation

$2

v

(4)

(5)

is too unwieldy for analytical purposes.
function

is used, following Laue*s method, where p is the radius of the crystal.
The constant @ is determined so that the ratio of space integral to
maximum value becomes identical for the exact function and the approxi-
mation, equation (6). Accord3ng to Patterson (reference 2), and using

the-above‘notation

u=

The spectral distribution of

r@ 3 4/3 = 3.45p (7) 1

energy near a characteristic line is given ,.
with sufficient approximation by an expression

f(k) =
22

k-k;
+B

where A and B

This must be
in its dependence

.

o’fthe type

(8)

are constants. .

ccrmparedwith the form in which the intensity function
upon A is usualiy given; namely,

(9) “

—
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.-
where w is the half-width of the line, or

.,

(10)

Comparison with equation (8) shows that the variable k in the second
term of the denominator shouldbe repbcedby ~. Therefore,

,-

‘(k)=m
Returning to equations (5) and (6), it is necessary to perform first
the integration

over the surface of a
sphere by its tangent

where r is the

sphere of radius R..
plane normal to o%

Replacing, as ubual, the
(see preceding diagram),

Nm 21f rdrdp I’ro2

L

distance between the point

(12)

,L/r00 (d- R)2+# -

tangent plane, and the usual notation OAh =

equations (4), (5), (11), and (13),

—— —

(13)

B and a point
l/d is used.

on the

‘BY

is obtained.
1
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Stice only the neighborhood of k = ~ contributes substantially ‘

to the integral, the luwer limit of inte~ation may be taken to be -W
instead of O. Thus,

,

an integral which can be calculated by elementary methods:

k2y+ 1

( ){%[

‘. ~ 02 as tie

:1

(16)
4 % 2

sin e

)( )

k$w+ ~ 2
~ko-2d~jn@ ‘~ asine

If

(17)

stie=z
1

Sineo =-= (18)
2% ‘o ‘-=0

= Az

. +’&=p (19)

Equation (16) becomes

(20)

Stice z = sh 19 varies little over the width of the line, Z. may be

written for z in equation (20). The intensity the} becomes:

-1

u

—
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If 6 is

where the

is used.

not too close to Ye/2,

Aai&Q=cos

the following can be used:

0&3=; cos ; A#

deviation angle

@=2e (23)

The

The intensity
half-width

titensity becomes:

1
Ja (24)

( )(A4)2+tan2 ;:+ ‘: 2
0 3.45P sin 0/2

distribution is described by a resonance curve with the

o. 5@bo
w =.=tm~+ (25)

Lo 2 p Cos 0/2

The first term is due to the spectral width alone; the second is due to
the finite particle size alone. If the “fitegral breadth”

J

m

J(O) d@
B= - (26)

J(Q)

is used to characterize the line shape, the additivity expressed in
equation (25) is also conserved. Indeed,

DISCUSSION

o

,-

.

(22)

(27)

The half-value angular width of a line obtained by plane-pa&lel
characteristic radiation on a target of a uniform mass of crystals is
the sum of two terms: The “spectral” width which results for very Isrge

.
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crystals; and the “size” term which is obtaked by a monochrmnatic
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#

radiation impfiging upon crystals of finite size. The additivity of
the widths is not obvious. “ . %

!

h JonesY semiempirical calculations, the breadth is not the sm
of the “size” term and another term, tidependent of size, but the
relation is complicated. The.simple nature of the results presented
herein is due to the omission of “geometric” broadening effects.
However, these results have physical significance, because the geometric
width can %e reduced to a negligible quantity, if the time of exposure
can be ticreased. b previous experiments (reference,k),the geometric
factors were, h fact,.small as compared with other factors.

Many authors
of the type

where bl is the

(reference 5) propose for the l~e breadth a formula

size term and b2 the breadth of a line obtained with

very large crystals, this breadth being caused by all factors, geometrical
and spectti. It appears that at least for neglig~e geometric width,
this formula is not correct.

It is interesting to note that the ratio of the two terms in
equations (25) or (27) is a function of the diffraction angle> namelyy
proportional to sin @/2. This means that the effect of the spectral
width is negligible for small diffraction angles, whereas it tends to
have the ssme effect as size broadening for back-reflection. .

~ conclusion, the considerations of previous work (reference 1)
remati valid for crystals of finite size, provided that the size term
is added to the spectral term of the line width.

Armour Research Foundation
Chicago, Ill., June 30, 1948
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